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Abstract 

 The multidimensional k-NN (k nearest 
neighbors) query problem arises in a 
large variety of database applications, 
including information retrieval, natural 
language processing, and data mining. 
To solve it efficiently, database needs an 
indexing structure supporting this kind 
of search. However, exact solution is 
hardly feasible in multidimensional 
space. In this paper we describe and 
analyze an indexing technique for 
approximate solution of k-NN problem. 
Construction of the indexing tree is 
based on clustering. Construction of 
hash indexing is based on s-stable 
distributions. Indices are implemented 
on top of high-performance industrial 
DBMS. 

Keywords: k-NN search, multidimensional 
indexing, LSH 

1.   Introduction 
Efficiency of search is critical for modern 

information retrieval. Commonly, search queries 
retrieve relatively small portion of information. In this 
case, indexing search is much more efficient, than the 
full scan. Any given process or stored object can be 
characterized by a set of features that are usually 
called attributes. The purpose of any index is quick 
access to the object by the values of some of its 
attributes. In other words, the indices provide effective 
implementation of associative search.  

If attribute values belong to a linearly ordered set, 
searching can be implemented with one-dimensional 
indices. These indexing structures (such as B-trees and 
hash-files) are well studied in 70-80 years. But many 
real applications have a goal to find by values of 
several attributes or by attributes that can’t be naturally 
linearly ordered. In this case we need to implement 
searching in multidimensional space. Of the numerous 
multidimensional indexing structures proposed in the 
80-ies., only R-trees [1] passed the test of time. The R-
tree indexes are widely used in various applications 
and implemented in industrial databases.  
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Multidimensional searching is primarily associated 
with processing spatial and spatio-temporal data. 
Another class of applications, processing 
multidimensional data includes systems based on 
various flavor of a text vector model for methods of 
data mining, pattern recognition, data compression etc. 
Data obtained from the application of this class are 
typically characterized by high dimensionality.  

Typically, the processing of multidimensional data 
requires searching on the basis of proximity or 
similarity, rather than exact attributes equality. The 
most common search query is to find K nearest 
neighbors for a given dataset. 
In this work we present and compare two approaches 
for similarity multidimensional search. One idea is 
based on tree-clustering structure, the second one uses 
LSH method. The former is better in precision and the 
latter supersedes in the speed of computation. The 
remaining part of the paper is organized as follows. 
Section 2 contains the overview of related work. 
Section 3 informally outlines the techniques used in 
our approach. Our algorithms and data structures are 
presented in section 4, followed by analysis of 
experiments or results in section 5.   

2.   Related work 
Years of multidimensional searching evolution led 

to development of various indexing algorithms. Best 
known of them are R-trees [8], X-tree [2], AV-files 
and many others [3]. In the past decade, considerable 
attention is attracted by the scheme of space-sensitive 
hashing (LSH - locality sensitive hashing). M-trees [4] 
are intended for indexing the points of a metric space. 

R-tree indices [8] work well for low-dimensional 
spatial data. But R-tree family degrades rapidly due to 
the overlap in index pages in high dimensions. The 
problem of multidimensional search is extremely 
difficult with large-dimensional vectors. It is well 
known that the construction of universal indexing 
structures for large-scale data is impossible. This fact, 
known as the "curse of dimensionality," determined by 
the topology of the multidimensional space. It does not 
depend on the index constructing method. The 
practical consequence is that performance of any index 
structure, starting at some dimension, becomes worse 
than a full scan. This problem can be somewhat 
mitigated by considering the indexing structures and 
algorithms that give approximate results. Typically, 
the vectors represent only the proximity of the source 
application objects (eg vectors for information 
retrieval can not accurately express the meaning of the 



documents). According to that, it is reasonably to use 
approximate methods for finding. For example, LSH 
[6] gives only a probabilistic guarantee of correct 
answer for k-NN query [9, 5]. 

Locality-sensitive hashing works with vector space. 
This approach was introduced [15] and well developed 
[16-17] in last decade. 

In paper [15] the idea of using randomized 
hyperlanes for “sketching” initial dataset was 
presented. 

Then, in paper [16] was introduced improved 
method, which uses pivots from s-stable distribution to 
hash vectors from the dataset. Idea to preprocess 
dataset with dimensionality reduction methods [18] 
allows implementing new algorithm that appears to be 
near optimal LSH method [17]. However, it works 
only with Gaussian norm in Euclidean space. 

In many cases, it is computationally difficult not 
only to find and to prepare vectors (e.g., feature 
extraction of images), but even to calculate the 
function of similarity (or distance between vectors). 
Search could be greatly accelerated if it is possible to 
store a matrix of pairwise distances between objects. 
Unfortunately, this solution is not scalable because the 
size of the index in this case, will square dependence 
on the number of objects. 

In [10] k-NN search problem is dealt with the 
double filtering effect of clustering and indexing. The 
clustering algorithm ensures that the largest cluster fits 
into main memory and that only clusters closest to a 
query point need to be searched and hence loaded into 
main memory. In each cluster data is distributed with 
ordered-partition tree (OP-tree) main memory resident 
index, which is efficient for processing k-NN queries. 

High-dimensional clustering is used by some 
content-based image retrieval systems to partition the 
data into groups (clusters), which are then indexed to 
accelerate processing of queries. Recently, the Cluster 
Pruning approach was proposed in [12] as a simple 
way to produce such clusters. The evaluation of the 
algorithm was performed within an image indexing 
context. The paper [12] discusses the parameters that 
affect the efficient to the algorithm, and proposes 
changes to the basic algorithm to improve 
performance.  

[11] presents an adaptive Multi-level Mahalanobis-
based Dimensionality Reduction (MMDR) technique 
for high-dimensional indexing. The MMDR technique 
discovers elliptical clusters for more effective 
dimensionality reduction by using only the low-
dimensional subspaces, data points in the different axis 
systems are indexed using a single B+-tree. The 
technique is highly scalable in terms of data size and 
dimensionality. It is also dynamic and adaptive to 
insertions. An extensive performance study was 
conducted using both real and synthetic datasets, and 
the results show that our technique not only achieves 
higher precision, but also enables queries to be 
processed efficiently. 

In paper [14] a new clustering method is proposed: 
to group together only points that are close to each 

other. The remaining points are stored separately, not 
clustered. Such a structure is obtained unbalanced. In 
order to create the indexing structure, in [13], the 
distances between the selected set of pivots and the 
data objects is computed, sorted and nearest distances 
are stored in separated tables. For search at first query 
is compared with pivots.  

3.   The approach and rationale  
In this paper, we describe two methods that were 

used for approximate multidimensional search. The 
first one is actually a variation of a matrix tree, based 
on spanning tree clustering algorithm. The second is 
an implementation of the local-sensitive hashing 
(LSH), specifically tuned for high computational 
speed. 

The goal of this work is to construct the sub-
optimal index structure for approximate searching of 
multidimensional objects based on features of 
similarity (or distance function). This structure will 
provide a reasonable response time for practical ranges 
of different parameters. In order to evaluate the 
characteristics and performance of this structure, we 
have implemented the model over the data provided 
industrial relational DBMS. Perhaps this decision 
affects the efficiency but also ensures quick 
implementation, suitable for use in the prototype, for 
example, in an experimental system for content based 
image retrieval. That is, the developed system allows 
finding images on a number of characteristics similar 
to the one desired. 

If we have a reasonable matrix of pairwise 
distances, the problem of finding K nearest neighbors 
can be solved by one-dimensional index range scan. 
This operation is efficiently implemented in any 
relational database. In order to limit the size of an 
index, we will not store all pairwise distances, but only 
the distance to the K nearest points. Usually, search 
engines need to solve the problem of K-nn only for 
small values of K.  

3.1 Locality-sensitive idea 

Hash functions family is called locality sensitive 
with parameters (R, cR, P1, P2), if following: 
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Intuitively it means exactly that points with low 

21 vv −  (near in initial space) will collide into the 
same value with higher probability, then points with 
higher one.  

LSH method is based on hashing dataset with 
functions chosen uniformly at random from locality-
sensitive family. To satisfy approximate nearest 



neighbor query, we don’t need to perform full scan, 
but can find neighbors only in buckets, where query 
point falls. 
To construct LSH family, one needs to choose hash 
functions and determine probabilities P1 and P2. 
Indexing structure, according to these parameters can 
do nearest neighbors searching with following 
query(2)  and preprocessing(3) time: 
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4. Data structures and algorithms 

4.1 Algorithms description 

In the experiments, we would rely on high-
performance relational database system. Our storage 
structure was constructed on Microsoft SQL-server. 
The data were presented in the form of points of 
multidimensional space. We consider the objects as 
multidimensional vectors.  
 

4.1.1. Spanning tree 

The first storage structure organized as follows. 
For a given vector space we construct a minimum 
length spanning tree. We accept vectors as individual 
graph components and compute all pairwise distances 
between them.  

The metric space is defined as a pair (D; d) where 
D denotes the domain of objects and d: DЧD → R is a 
total function which must have the well-known non-
negativity, symmetry, identity and triangle inequality 
properties. The distance is calculated using the metric 
of L1.  

We create index structure so: 
A. Add to the tree minimal length arc if endpoints 

of this arc belong to different components. At 
the same time we restrict maximum number of 
arcs entering each vertex.  

B. Repeat step A until the number of components 
becomes equal to one.  

C. Split the tree to l components by removing l 
longest arcs. During splitting we monitor the 
number of vertices in the connected 
component – it must be more then min and 
less then max.  

D. For all building component we find the central 
vector – centroid. These centroids are vectors 
in same space, but theirs quantity is much 
smaller then amount of source vectors, and we 
consider them as new level vectors.  

E. To a new level we repeat step A – D. So we 
built the second level of our indexing 
structure.  

F. We add levels with steps A – E until the 
number of allocated centroids on the top-level 
became sufficiently small. The latter set of 
centroids forms the upper level of the index 
tree.  

Search is organized as follows: 
A. Begin from upper level component.  
B. Calculate distances between the current level's 

vectors and given search query.  
C. We choose the nearest vector and the 

corresponding component. We proceed to the 
next level and repeat step B. Then, using 
precalculated matrix of distances, we choose 
the nearest centroid and go to the next level. 

D. On lowest level we select nearest vectors to 
the query. 

By adding new vector: 
A. Repeat steps A-D from search, we find the 

lowest level component which centre is nearest 
to the specified vector.  

B. If number of vectors exceeds the upper limit, 
we do not divide it into two parts, and climb 
one level up and perform re-clustering for all 
vectors caught in this component. 

 

4.1.2. s-stable distribution LSH 

 
This randomized algorithm is using the idea, described 
in [16] 

Here we use scalar product with random vectors 
from s-stable distribution to “sketch” initial high 
dimensional vector. 

Locality-sensitive hashing family with parameters 
(R , cR, P1, P2)  

(P1,P2 – probabilities of “good” and “bad” 
collisions, R – query radii, c – approximation factor) is 
defined as follows: 
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(4)

a – random vector from s-stable distribution, 
predefined in pivots table; b – random shift, chosen 
uniformly at random from [0..w]; v – vector from 
initial dataset. 

Due to s-stability, for every two vectors (p, q) 
distance between their projections (a.p – a.q) is 
distributed as Xqp

s
− where X is a s-stable 

distribution. It means that if two points a near( low
qp − ) then they should collide with high 

probability, and if they are far they should collide with 
small probability. 

However, if we use these functions to preprocess 
dataset, we will have a plenty of false-positive answers



LK )P(=д 111 −−  because of low difference 
between P1 and P2 

To increase it, we construct composite hash 
function ig , Li 1..∈  as a concatenation of hash 

functions ji,h , Kj 1..∈ .  
For new hash functions P1 = P1

K, P2 = P2
K. 

To increase total probability of retrieving answer, 
we hash dataset with L different hash functions gi. 
Equation (5) describes probability д of getting a 
correct answer. 
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To make an indexing structure, we need to 

precompute parameters L, K and w. 
w can be estimated using formula (6)  
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Parameters K and L are choosing experimentally by 
constructing different data structures, satisfying 
equation (7) 
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4.2   Indexing on spanning tree 

4.2.1. Data structures 

 For indexing structure we used 4 tables. First table 
stores coordinates of vectors. In order to the table 
structure not to depend on the dimension of space, 
each vector is represented in the table as a set of rows - 
one row for each coordinate of the vector. Each row 
has the following structure: 

Vector number Int 
Coordinate number Int 
Value Float 

The second table stores calculated distances 
between all pairs of vectors. Algorithm performance 
doesn't depend on distance measure. In our 
experiments distance was calculated using the metric 
of L1, but for the method it does not matter. Our 
function is defined as follows: r(x, y)=∑|xi-yi|. With 
these distances construct a table of distances in each 
row that stores the distance between two vectors.  

Table with attributes:  
Vector number 1  Int 
Vector number 2 Int 
Distance Float 
Component number Int 

  
We build a spanning tree of minimum 

length(depth?) and divide it into components. For arcs 
not belonging to spanning tree component number is 
equal to zero, otherwise, this field indicates the 
number of components, which the arc belongs to. 

This table will be very large, but it is necessary 
only at the base index constructing stage. Later during 
search and insertion, we need only some of pairwise 
distances. 

Vector table is as follows:  
Vector number  Int 
Component number Int 
Distance Float 
Low-level vectors number Int 

For top-level vectors component number equals 
zero, else this parameter indicates the number of 
components, which contains this vector.   

We use the distance between vectors and 
component center by searching. For top-level vectors 
this distance is zero. For every vector-centroid we 
store low-level vector number - is necessary for know 
how many vectors contains this component.  

The table structure component:  
Component number Int 
Level Int 
Vectors amount Int 
Centroid number Int 

 
Vectors amount indicates how many vectors are at 

the lowest level of this component. 

4.1.2   Index structure construction   

To construct a spanning tree minimum length we 
use the following algorithm:  

1. We consider multi-dimensional vectors as 
vertices of the tree and the distance between 
the vectors of the arc. At the lower level we 
assume each node a separate connected 
component. We set all component numbers to 
zero 

2. Compute all pairwise distances and sort them 
in ascending order.  

3. Select next minimum length arc with zero 
component number. Consider vectors - the 
ends of the selected arc. If these vectors 
belong to one component, then we skip this arc 
and repeat step 3 with the next arc.  

4. Check the number of arcs included in these 
peaks and owned by any component. The 
classical tree construction algorithm was 
modified to avoid height degree of nodes. To 
ensure this rule the number of edges adjacent 
to a node is restricted with a parameter. (no 
more Nin). If at least one end of the arc 
constraint is violated, then we skip this arc 
(with marking – set component number 
negative) and goto step 2. 



5. Add to the spanning tree arc between two 
vertices.  

6. Connect these components are connected into 
one.  

7. Continue to step 3 - 6 up until all the vertices 
not included in one connected component.  

8. Divide constructed spanning tree into several 
connected components. Each component must 
have from Nmin to Nmax vertices. Number of 
components depends on the number of vectors 
stored in the table, and is determined with Nmin 
and Nmax. When we split a spanning tree of 
connected components of the arcs belonging to 
the spanning tree, we select the arc with 
maximum length. Exclude this arc from the 
spanning tree, forming two connected 
components. Check that the number of vectors 
in the resulting components more Nmin. If not, 
it returns back and mark the removed arc. 
Iterate arcs from the spanning tree, while not 
succeed to break a connected component into 
two parts. Then divide each new piece, while 
the size of the component will not appear 
between Nmin to Nmax.  

9. In each component we find the centroid. To 
find value of the i-th component  centroid we 
average values of the i-th component's vectors 
in a given connected component. For each 
component, we store the number of vectors in 
it. 

10. Consider centroids as multidimensional 
vectors on the next level. If vectors amount is 
more than given Nmax we repeat steps 1-8 of 
our algorithm.  

4.1.3   Search 

1. Begin at the top level.  
2. Compute distances between stored vectors of 

current level (inside current component) and 
query vector, order the list by distance in 
ascending order. If current level is lowest, we 
found an answer.  

3. Take first vector (with minimum distance), 
determine the component and the number of 
vectors contained in it. Exclude the first 
element of the list. If the number of vectors in 
the component is less than desired, then repeat 
step 3. 

4. Determine the vectors in selected components 
and goto step 2. 

4.1.4   Scalability 

1. Search (step 1-4) for k=1. 
2. Selected component contains vectors nearest 

to given query, and we try to insert new 
vector into selected component. If the number 
of vectors in this connected component is less 
than the maximum allowed, then this 
component is updated with a new vector. We 

recalculate centroid’s coordinates and the 
number of vectors inside components on all 
levels.  

3. If number of vectors exceeds the upper limit, 
we do not divide it into two parts. We climb 
one level up and find all vectors belonging to 
selected component of the current level, and 
perform re-clustering for all vectors of this 
component. We rebuild spanning tree for a 
new set of vectors and divide it into 
connected components. We are doing so at 
every level of the indexing structure if current 
component is overcrowded.  

Operation of completion thus obtained is 
sufficient labor intensive. But we anticipate that most 
queries will be directed at search and not an upgrade. 

4.2 LSH-method 

4.1.1. Data structures 

To implement locality-sensitive hashing using s-stable 
distributions we used following structures: 
Table contained vector number and nested table with 
its coordinates. 
 

Vector number Int 
Coordinates Nested Table of Float 

 
Table with predefined pivots from normal distribution 
and random shift for them. 
 

Pivot number Int 
Coordinates Nested Table of Float 
Random Shift Float 

L tables for different hash functions with identical 
structure: K columns with hash values of simple hash 
functions and nested table for keys of vectors that have 
the same hash values. We can store all hash values in 
the same table because number of simple hash 
functions is defined on preprocessing stage. 
 

Hash_value_1 Float 
Hash_value_2 Float 
… … 
Hash_value_K Float 
Vector keys Nested Table of Int 

 
And table, that store the choice of  pivots for certain 
hash function 
 

Number of hash function Int 
Pivot_1 Int 
Pivot_2 Int 
… … 
Pivot_K Int 

 



Here, number of pivots is also predefined during the 
preprocessing stage. 
 
We also have a statistics table that is needed only for 
preprocessing. It helps to determine optimal 
parameters for indexing structure. 
 

Value of K Int 
Average query time Float 

 

4.1.2 Preprocessing and index structure 
construction   

Step 1: Preprocessing. 
To find optimal values for K and L we build indexing 
structures for different K from 3 to 15 and appropriate 
L, calculated by the formula (7) 

 
A. Build indexing structure for certain value 

K.  
B. Hash all points Pp ∈ with L hash 

functions. 
C. Run testing set on this indexing structure. 
D. Store value of K and average query time 

in statistics table. 
E. Delete indexing structure. 
F. Repeat A-E, until K < 16. 
G. Retrieve value of K from statistics table 

with minimal query time 
H. Build indexing structure with obtained 

value of K and appropriate value of L 
 
Step 2: Search. 
 

I. Hash query point q with hash function gi  
J. Retrieve all points from bucket gi(q). 
K. If retrieved points are not enough to 

satisfy k-NN query, then repeat 1-3 with 
next hash function gi+1  

L. Sort retrieved points and return first k 
elements as an answer. 

 

5.  Experiment and analysis 
To compare described algorithms, dataset refereed 

to content-based image retrieval was considered. It 
consists of 25000 rows with 41 attributes, representing 
different image characteristics. Methods were 
implemented within Microsoft SQL-Server DBMS. 
During experiments average accuracy (percent of exact 
nearest-neighbors in retrieved approximate answer) 
and relative time consumption were calculated. 

Results for spanning-tree algorithm: 
 
1-NN   query – 87% 
10-NN query – 70% 
50-NN query – 79% 

Query response time was 10 times faster than the 
one in naive full scan. 

 
 

Method based on LSH produced the following results: 
1-NN query   – 62% 
10-NN query – 50% 
50-NN query – 34% 

However, hashing algorithm worked approximately 40 
times faster than the previous one. 

6. Conclusion 
In this paper two different algorithms for 

multidimensional indexing were described. These 
algorithms were implemented and analyzed with 
different parameters on real dataset. Based on the 
results of experiments, we can draw the  following 
conclusions: first method proposed gives a sufficiently 
accurate result, but  compared to LSH lose heavily in 
time. If the k-NN search is not 2k, but 3-4k, then the 
precision increases, but difference between tree and 
hashing query response time is even more significant. 
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